
A generalized photon propagator

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2007 J. Phys. A: Math. Theor. 40 F737

(http://iopscience.iop.org/1751-8121/40/30/F06)

Download details:

IP Address: 171.66.16.109

The article was downloaded on 03/06/2010 at 05:22

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/40/30
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL

J. Phys. A: Math. Theor. 40 (2007) F737–F743 doi:10.1088/1751-8113/40/30/F06

FAST TRACK COMMUNICATION

A generalized photon propagator

Yakov Itin

Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
and
Jerusalem College of Technology, Jerusalem, Israel

E-mail: itin@math.huji.ac.il

Received 20 June 2007
Published 12 July 2007
Online at stacks.iop.org/JPhysA/40/F737

Abstract
Premetric electrodynamics is a useful formalism for unified description of
a wide range of modified electrodynamics models. It is also applicable in
describing of the electromagnetic processes in anisotropic media. In the current
paper, we present a covariant gauge-independent derivation of the generalized
dispersion relation for electromagnetic waves in a medium with a local, linear
constitutive law. Moreover, we derive a generalized photon propagator (Green
function in the momentum representation). For Maxwell constitutive tensor,
the standard light cone structure and the standard Feynman propagator are
reinstated.

PACS numbers: 04.20.Cv, 04.50.+h, 03.50.De

1. Introduction

From a formal point of view [1, 2], the Maxwell electrodynamics theory can be represented
by a system of two independent equations

εijklFjk,l = 0, H ij
,j = J i, (1)

where two independent antisymmetric tensors, the field strength tensor Fij and the excitation
tensor density Hij are involved. The electromagnetic current vector density is denoted by J i .
Here, the commas stand for ordinary derivatives, the indices range from 0 to 3, the Levi-Civita
permutation tensor is normalized by ε0123 = 1.

For most applications it is enough to assume a local, linear, homogeneous constitutive
relation between the fields Fij and Hij ,

Hij = 1
2χijklFkl. (2)

By the definition, the constitutive tensor χijkl has to respect the symmetries of the fields Fij

and Hij ,

χijkl = χ [ij ]kl = χij [kl]. (3)

Hence it has, in general, 36 independent components.
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The standard Maxwell electrodynamics in vacuum is reinstated in this formalism by a
special choice of the Maxwell–Lorentz constitutive tensor

(Max)χ ijkl = λ0
√−g(gikgjl − gilgjk). (4)

Here, gij are the Lorentz metric components, while λ0 is a constant with the dimension of an
admittance.

In this paper, we study the formal scheme (1), (2) with a general constitutive tensor χijkl .
The physical spacetime is considered as a bare manifold without metrics or connection. All
the information about the geometry of this space is encoded in the constitutive tensor. In other
words, we are dealing with a premetric electrodynamics.

Such a construction is applicable for description of a rather wide range of physics effects.
As a classical field theory, the premetric electrodynamics involves the standard Maxwell
electrodynamics in vacuum and even provides a possibility of describing the additional degrees
of freedom (axion, dilaton and skewon) as the premetric partners of photon [3, 4]. Moreover,
since the metric is a secondary quantity in this scheme, its form [5–8], and the signature [9]
are derived from the properties of the constitutive tensor. The nonminimal coupling of the
electromagnetic field to the torsion yields the birefringence of vacuum [10, 11]. This effect
finds its natural description in the premetric scheme [12, 13].

Another interesting area of application is the models with violation of Lorenz invariance.
In particular, the Carroll–Field–Jackiw modification of the Maxwell electrodynamics [14],
see also [15], is embedded in the premetric scheme. The wave propagation in this model
requires, however, to go beyond the geometrical optics approximation [16]. This problem will
be considered in a contributed publication.

The mathematical methods similar to those used here were shown to be useful in ray
optics applications to GR [17] and in quantum plasmadynamics [18].

In the present communication, we give a covariant gauge-independent derivation of
the generalized dispersion relation for the premetric electrodynamics. Moreover, we
derive a generalized Green function in the momentum representation—a generalized photon
propagator.

2. Dispersion relation

To study the wave propagation in the premetric electrodynamics model, we solve the first
equation of (1) in terms of potentials Fij = (1/2)(Ai,j − Aj,i). Substituting it into (2) and (1)
and the current J i to be equal to zero, we derive

χijklAk,lj = 0. (5)

To study the wave-type solutions of this equation, we consider an ansatz

Aij (x) = ai eiϕ, (6)

where ϕ = ϕ(xi) while ai is a constant covector. Such solutions always exist on sufficiently
small neighborhoods even on bare manifold [17]. Denote the wave covector as qi = ϕ,i .

In the geometrical optics approximation, the changes of the media parameters are
neglected relative to the changes of the wave characteristics. Consequently, we come to
an algebraic system

Mikak = 0, where Mik = 1
2χijklqlqj . (7)

Due to the symmetries of the constitutive tensor (3), the matrix of the system satisfies

Mikqk = 0, Mikqi = 0. (8)
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The first relation of (8) means the gauge freedom of the vector potential while the second
relation is interpreted as a charge conservation condition. Due to (8), the rows (and the
columns) of the matrix Mij are linearly dependent, so its determinant is equal to zero.
Moreover, the gauge relation (8) can be interpreted as a fact that

ak = Cqk (9)

is a formal solution of (7). This solution does not give a contribution to the electromagnetic
field strength so it is unphysical.

An additional physically meaningful solution has to be linearly independent of (9). A
linear system has two or more linear independent solutions if and only if its rank is 2 (or less).
Consequently, a generalized electrodynamics system has a physically meaningful solution if

Aij = 0. (10)

Here, we involved the adjoint matrix Aij —a matrix constructed from the cofactors of Mij .
The components of the adjoint matrix are expressed by the derivatives of the determinant
relative to the entries of the matrix

Aij = ∂ det(M)

∂Mij
= 1

3!
εii1i2i3εjj1j2j3M

i1j1Mi2j2Mi3j3 . (11)

Since the adjoint matrix has, in general, 16 independent components, it seems that we have
to require 16 independent conditions. The following algebraic fact shows that the situation is
rather simpler.

Proposition. If a square n × n matrix Mij satisfies the relations

Mijqi = 0, Mijqj = 0 (12)

for some nonzero vector qi , its adjoint matrix Aij is represented by

Aij = λ(q)qiqj . (13)

For a formal proof of this fact, see [20]. Consequently, instead of (10), we have only one
condition

λ(q) = 0. (14)

This condition is necessary to have physically meaningful solutions of the generalized wave
equation, so it is a generalized dispersion relation.

The problem now is to derive from (13) the explicit expression for the function λ(q).
It is provided [20] by using the fact that the functions involved in (13) are homogeneous
polynomials. In fact, Aij is of the sixth order in the wave covector qi , while λ(q) is of the
fourth order. Applying twice the derivatives with respect to the components of the covector
qi and using Euler’s rule for the homogeneous functions, we obtain

λ(q) = 1

72

∂2Aij

∂qi∂qj

. (15)

In terms of the matrix Mij , the function λ(q) is rewritten as

λ(q) = 1

144
εii1i2i3εjj1j2j3

(
∂2Mi1j1

∂qi∂qj

Mi2j2 + 2
∂Mi1j1

∂qi

∂Mi2j2

∂qj

)
Mi3j3 . (16)

This expression may be useful for actual calculations of the dispersion relation for different
media. In order to have an explicit expression of the function λ in terms of the constitutive
tensor, we have to calculate the corresponding derivatives. The resulting dispersion relation is

εii1i2i3εjj1j2j3(χ
i1(ij)j1χi2abj2 + 4χi1(ia)j1χi2(jb)j2)χi3cdj3qaqbqcqd = 0. (17)
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This equation is completely equivalent to the recently proposed [2] covariant dispersion relation

εii1i2i3εjj1j2j3χ
ii1jaχbi2j1cχdi3j2j3qaqbqcqd = 0. (18)

Indeed, in the special coordinate basis with qi = (q, 0, 0, 0), both equations yield the same
non-covariant expression. Also, the direct proof of the equivalence of two forms is available
[19].

The function λ(q) is a fourth-order polynomial. When it is separated to a product of
two non-positive defined quadratic factors, the birefringence effect emerges. This effect is
well known from the classical optics. However, in the premetric approach two light cones
explicitly represent the violation of the Lorentz invariance. The non-birefringence condition
can be given in a simple covariant form [7]. For an arbitrary covector q,

λ(q) � 0 (19)

has to be satisfied. For a component-wise representation of this condition, see also [6].
Observe an important special case. When the skewon part is absent, the constitutive tensor

respects the symmetries

χijkl = χklij . (20)

In this case, two terms in (17) are proportional to one another. Thus, two additional expressions
for the restricted dispersion relation emerge

εii1i2i3εjj1j2j3χ
i1(ij)j1χi2abj2χi3cdj3qaqbqcqd = 0 (21)

and

εii1i2i3εjj1j2j3χ
i1(ia)j1χi2(jb)j2χi3cdj3qaqbqcqd = 0. (22)

For the Maxwell constitutive tensor (4), the matrix Mij takes the form
(Max)Mij = λ0

√−g(gij q2 − qiqj ). (23)

The corresponding adjoint matrix is
(Max)Aij = −(λ0

√−g)3q4qiqj . (24)

Consequently, in this special case, the dispersion relation takes its regular form q2 = 0.

3. Photon propagator

Let us return to the full inhomogeneous Maxwell equation with a nonzero current. In the
‘momentum’ representation, it takes the form

Mikak = j i . (25)

Observe that the charge conservation law is expressed now as

j iqi = 0. (26)

It is useful to have a formal solution of equation (25) for an arbitrary given current jk . Such
a solution is usually given by the Green function or photon propagator, Dij (q). This tensor is
defined in such a way that the covector

ak = −Dkij
i (27)

is a formal solution of (25). Note that, due to the gauge invariant and charge conservation,
the propagator, Dij (q), is defined only up to the addition of terms proportional to the wave
covector qi ,

Dij → Dij + φiqj + ψjqi. (28)
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Here, the components of the covectors φi and ψi are arbitrary functions of the wave covector.
In the standard electrodynamics, an expression for this quantity is known as the Feynman
propagator

Dij = − 1

λ0q2
gij . (29)

Substituting (27) into (25) we get(
MikDkm − δi

m

)
jm = 0. (30)

Note that the matrix Mik is singular, so the propagator cannot be taken to be proportional to
the inverse of Mik . In the standard case, it is not a problem. Indeed, with the matrix Mij given
by (23) and with the Feynman propagator (29), we have

MikDkm = −δi
m +

λ0

q2
qiqm. (31)

When this expression is substituted into (30), the second term disappears due to the charge
conservation equation (26) and the equation is satisfied.

Our task is to derive an expression for the photon propagator in a general case when the
metric tensor is not acceptable. To deal with the singular matrix Mij , we consider the tensor
density

Bijkl = ∂Aij

∂Mkl
= ∂ det(M)

∂Mkl∂Mij
. (32)

This is the, so-called, second adjoint (or the second adjugate compound) of the matrix Mij .
It is obtained by removing two arbitrary rows and two arbitrary columns from the original
matrix. Observe that due to its definition the second adjoint tensor respects the symmetry

Bijkl = Bklij . (33)

It is expressed by the components of the matrix Mij as

Bijkl = 1
2εiki1i2εjlj1j2M

i1j1Mi2j2 . (34)

From this expression, we read off the additional symmetries

Bijkl = −Bkjil = −Bilkj . (35)

Let us derive an identity involving the second adjoint tensor. The derivative of the
generalized Laplace expansion AijM

ik = 0 relative to the entries of the matrix Mrs yields

BijrsM
ik = −Arj δ

k
s . (36)

We multiply now both sides of equation (25) by the tensor Bijrs to get

BijrsM
ikak = Bijrsj

i . (37)

Using (36) we rewrite it as

Arjas = −Bijrsj
i . (38)

Substituting (13) we get

λqmqnak = −Bimnkj
i . (39)

We are coming once again to the same problem: How to ‘divide’ both sides of this equation by
the covector qi in a covariant manner? Observe that λ and Bimnk are homogeneous polynomials
in q of the order 4. Assuming j i to be independent of q, we see that ak is a homogeneous
polynomial in q of the order −2. Note that this is in correspondence with the classical
expressions (29).
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Applying twice the partial derivatives with respect to the components of the wave covector
and using Euler’s rule for the homogeneous functions, we come to

ak = −1

6

∂2

∂qm∂qn

(
Bimnk

λ

)
j i . (40)

Consequently, we derived an expression for the generalized photon propagator

Dij = 1

6

∂2

∂qm∂qn

(
Bmijn

λ

)
. (41)

Using the homogeneity of the polynomials involved here, we get certain equivalent expressions

Dij = 1

42λ

∂2Bmijn

∂qm∂qn

= 1

42λ

∂2

∂qm∂qn

(
∂Ami

∂Mjn

)
. (42)

In terms of the matrix Mij , it takes the form

Dij = 1

84λ
εimm1m2εjnj1j2

∂2

∂qm∂qn

(Mj1m1Mj2m2). (43)

And finally we derive an expression of the generalized photon propagator via the constitutive
tensor

Dij = 1

84λ
εimm1m2εjnj1j2 [χj1(mn)m1χj2abm2 + 2χj1(ma)m1χj2(nb)m2 ]qaqb. (44)

For the Maxwell constitutive tensor, the second adjoint takes the form

Bijkl = 2λ2
0gq2[(gij qlqk + gklqiqj ) − (gilqj qk + gkjqiql)]. (45)

Calculating with (42), we come to the standard Feynman propagator expression.

4. Conclusions

In the framework of the premetric electrodynamics, we derived covariant expressions for the
dispersion relation and for the photon propagator. Both derivations are covariant and gauge
invariant. The dispersion relation is equivalent to the recently proposed generalized Fresnel
equation, which however was obtained in a special Tamm gauge. A covariant expression for
the generalized photon propagator is a new result. Both results are applicable to a wide range
of modified electrodynamics models (linear and nonlinear). Moreover, these formulae are also
suable for the description of the electromagnetic behavior of anisotropic media.
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